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 GYROKINETIC EQUATIONS IN AN EXTENDED ORDERING  
 

Andris M. Dimits, LLNL 
 
 
 
 

We have developed a gyrokinetic theory in an extended ordering in which the small parameter is 
the ratio of the ExB shearing rate and the gyrofrequency. This allows for long wavelength ExB 
flows of order the thermal velocity instead of the more restrictive standard orderings which either 
require that the electrostatic or the ExB flow velocity be small compared with the thermal levels. 
Our theory generalizes prior work to allow for time dependence in the large long-wavelength 
component of the electric field, and a continuum of scales in the field components rather than 
just two distinct components. In the new theory, a significant part of the polarization drift now 
resides in the equations of motion, but there is still an identifiable polarization density that can be 
used to solve for the electrostatic potential from a quasineutrality or vorticity equation. 
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I. Introduction 
 
The presence of a strong ambient magnetic field in a plasma can, in many cases, be exploited to 
simplify the description of the plasma and the prediction of its behavior. In particular, if the 
gyro- (or “cyclotron” or  “Larmor”) orbital motion of a charged particle is much more rapid than 
the rate of change of the electromagnetic fields (and the rate of any “scattering” processes) seen 
by the particle, then the particle’s magnetic moment becomes and adiabatic invariant. This fact 
was the basis for guiding-center theory [1] and, later, gyrokinetic theory [2-8]. In both cases, the 
temporal variation of the system is taken to be slow compared to the gyro frequency. In the 
guiding-center theory, the particle gyro-orbit size is required to be small compared to all spatial 
scales of any inhomogeneities in the system, while the gyrokinetic theory permits perturbations 
with scales comparable to the gyro orbit size. 
 
Gyrokinetic-equation-based models have found wide use in the simulation of microturbulence 
and the resulting transport in magnetic fusion core plasmas [6, 9-17]. The gyrokinetic equations 
are valid under certain “gyrokinetic orderings,” are faithful to the key kinetic (non-
hydrodynamic) physics, but reduce the dimensionality of the relevant phase space by one relative 
to the raw “full-dynamics” Vlasov-Fokker-Planck equation. This reduction in dimensionality 
(e.g., from 6 to 5 for spatially 3-dimensional systems) can result in a large corresponding 
reduction in the number of degrees of freedom (grid cells, nodes, basis functions, or particles) 
needed to discretize the phase-space distribution (density) function to a given level of accuracy. 
Accompanying this reduction also is the removal of various high-frequency modes that are often 
not of central interest for the microturbulence or transport processes being simulated, but are 
numerically problematic 98]. 
 
The success of gyrokinetic simulation of MFE core plasmas has motivated interest in extending 
the models to the edge and scrapeoff-layer regions [18,19], as well as to other situations that 
stress the existing orderings. The length-scale separation between the radial plasma scales the 
gyroradius scales in the MFE edge region is much less than in the core. Thus, while we expect 
that a gyrokinetic ordering may still be satisfied in many edge and scrapeoff-layer situations, it 
will be less easily satisfied than in the core. Additional care therefore needs to be taken to ensure 
that the particular expression and use of the ordering results in a set of equations that are valid 
for the conditions and phenomena expected in the edge. Some progress in this direction has been 
made by several authors [20-24]. In [20], the derivation was extended to allow for electrostatic 
potential perturbations to be of order the temperature, and therefore relative perturbations of 
order 1 in the moments of the distribution function. However, this work did not allow for E B  
flow velocities comparable to the thermal velocity. The work of refs. [21-24] allowed for such 
large E B flow velocities, but only as a separate static long-wavelength component. We will 
show here that further extension of the ordering and applicability of the theory is possible. 
 
The fundamental requirement for the magnetic moment to be an adiabatic invariant can be 
written as  
 

w
e 1=

W
 , (1.1) 
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where w  is the rate of change of the electromagnetic fields seen by the particle and W = qB Mc  

is the cyclotron frequency. Here, q  and M  are the particle charge and mass, B  is the magnetic 
field strength,  and c  is the speed of light. The magnetic moment can be written to lowest order 

as 2 2m ^=Mv B , where is the perpendicular velocity. 

 
Most of the nonlinear gyrokinetic theories [4-8] have as requirements that 

f d
r e1

eq

~ ~ ~ 1
t

q f
k

T F   , (1.2) 

Here, ( )1 1
,f f= x t  is the perturbed electrostatic potential, T  is the temperature, fd  and eqF  are 

the perturbed and equilibrium distribution functions, and k  is the characteristic parallel 

wavenumber, t tvr = W  is the thermal gyroradius, =
t
v T M is the thermal (kinetic) particle 

speed, and e  is the formal expansion parameter (“gyrokinetic smallness parameter.”) The first 
condition of Eq. (1.2) is somewhat counterintuitive, as it suggests that the theory would break 
down if a large constant were added to 

1
f . A partial resolution of this apparent paradox lies in 

that these theories also formally order r ~ 1
t

k
^

, where k
^

 is the characteristic perpendicular 

wavenumber. Equation (1.2) also formally rules out the application of the resulting gyrokinetic 
system to situations where large perturbations are present, for example in the outer edge region 
of magnetically confined plasmas, even if the frequency ordering for adiabatic invariance of the 
magnetic moment is satisfied.  
 
Some success has achieved in going beyond this ordering. Dimits et. al. [20] extended the 
canonical Hamiltonian gyrokinetic theory [5,8] to allow for 

1
~ 1fq T , with the new small 

parameter 
 

1
V ~ 1E B

t
t

V q
k

v T

f
e r´

^  . 

 
Here E BV ´  is a characteristic  E B drift velocity associated with 1f . Under this ordering, the 
electrostatic potential can have large long-wavelength components and small short-wavelength 
components, as well as components of intermediate sizes at intermediate scales. It has also been 
recognized [25] that this is also the ordering under which some of the iterative derivations of the 
gyrokinetic equations are valid.  
 
Motivated originally by large core-plasma flows, the gyrokinetic formalism was extended to 
allow for a large long-wavelength field component   with, in addition to a short-wavelength 
component 1f that satisfies the standard ordering [21-24]. The E B drift associated with  , 

( E
ˆc B  u b  ) can be of order tv  provided that its scale length is macroscopic and its 

associated shearing rate is much less than W . Such a two-component potential is not completely 
general, as it formally does not allow any mesoscale components. Also, the structure of the terms 
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in the standard theories suggest that cross terms may be missing at second order in the results of 
Refs. [21-24], as will be shown in this work. 
 
In the present paper, we derive a gyrokinetic theory based on the following more general 
ordering 
 

( )
'

2 1 L
S~ 1E B

t

V q
k

T

f w
r e´

^ =
W W

  . 

 
Here, Lw  can be defined as the rate of change of the particle’s perpendicular kinetic energy. 
Such an ordering makes intuitive sense in that if it is satisfied, then the perpendicular particle 
motion consists of gyromotion plus small perturbations to the gyromotion.  
 
In order to carry out the derivation of the resulting gyrokinetic system, we use noncanonical 
Hamiltonian perturbation theory in a frame moving with a velocity field  ,v,tu x  that is chosen 

to make the perturbation theory work. In particular, by a suitable choice of u , the gyrophase 
dependent part of the particle Lagrangian can be pushed out to orders no lower than 1

Se , and a 
perturbation theory can then be used to eliminate the remaining gyrophase dependences.  
 
A clear exposition of the basic noncanonical Hamiltonian perturbation method, along with the 
application to the derivation of the drift-kinetic equations for a particle in an inhomogeneous 
magnetic field was given by R. Littlejohn [26]. This method was applied to the derivation of the 
gyrokinetic particle (characteristic), Vlasov, and Poisson equations for a plasma in a slab 
magnetic field by Hahm [7]. Subsequently, generalizations were made to a variety of situations, 
and this body of work has been reviewed by Brizard and Hahm [8]. The use of transformation to 
a (static but spatially dependent) moving frame was applied to the derivation of gyrokinetic 
equations by Brizard [21] and by Hahm [22]. In the present application, we will generalize this 
method to allow for the transforming velocity to depend on time as well as on the velocity itself. 
The temporal dependence brings additional terms into the equation of motion and facilitates the 
recognition of some of the terms in the results of Refs. [21-24] as parts of a polarization drift 
associated with u . 
 
We also note that even in our generalized ordering, it is still possible to iteratively solve the 
equations for the gauge functions, so that one is does not have to implement these equations 
directly in the form of additional kinetic equations of the type were given in Ref. [23]. 
 
Our theory is applicable in abitrarily boosted frames of reference, allows for time-dependent 
perturbations over a continuum of scales ranging from macroscopic to gyroradius, including 
large mean flows and large perturbations at macroscopic scales. 

We anticipate that our equations may facilitate better connection to the Braginskii equations and 
MHD. This is a topic for further exploration. 
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II Gyrokinetic Equations in the Generalized Ordering. 
 
In the present work, we consider a slab plasma in a uniform time independent magnetic field 

ˆBB b ,  (e.g., with ˆ ˆb z ) and electrostatic potential perturbations ( )1 1
,f f= x t  such that the 

E B velocity 1E B
ˆc B  V b   satisfies 1'

E BV   , where '
E BV   is the characteristic  

magnitude of the spatial derivatives of E BV  . We will also require and use that 

ExB

1
1

t

     
V   when applied to E BV , even though 

1

t


 

 and ExB

1



V   need not be small 

(e.g., when applied to gyroscale perturbations). 
 
We will derive a gyrocenter Lagrangian (or Poincare’-Cartan 1-form) in a manner similar to that 
of Littlejohn [27]. In particular, a single pass through the perturbation expansion is used. In most 
gyrokinetic derivations [5,7,8,20-25], a guiding-center Lagrangian is first derived in the absence 
of the (gyroradius-scale part of the ) perturbed potential, and then perturbation theory is used to 
eliminate the gyrophase dependences that result from the perturbed potential. This is an 
important distinction because in our ordering, the electrostatic potential perturbations already 
appear at the lowest order in the theory. 
 
We will use the method of noncanonical Hamiltonian perturbation theory in a locally moving 
reference frame [21]. However, our results can be greatly simplified if a slight generalization 
with respect to the method in Ref. [21] is used to allow the reference-frame velocity itself to 
depend on the velocity variable.  Given the raw “physical” phase-space coordinates  Q , x v , 

where x  is the position and v  is the velocity variable, the phase-space Lagrangian for a particle 
moving in an electromagnetic field with the magnetic vector potential  ,tA x  and electrostatic 

potential  1 ,t x , generalized to allow for transformation to a frame moving locally with a 

velocity  , ,tu x v  is  

         2

1

1

2
L Q,Q,t ,t , ,t , ,t ,t               

A x u x v v x u x v v x  .  (2.1) 

The v  Euler-Lagrange equations 

0
d L L

dt v v
æ ö¶ ¶÷ç= =÷ç ÷çè ø¶ ¶

 

give 

( ) ( )0 vI u x u v é ù= + ⋅ - +ë û . 

 
If 1vu  , as will be the case for our choice of  , ,tu x v , then it follows that 

 
( ), ,tx u x v v = + . 
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This is a key result that says that v  is the velocity in the moving frame even if the velocity of 
that frame (with respect to the laboratory frame) itself depends on v  and on time. 
 
The x  Euler-Lagrange equations 

d L L

dt

      x x
 

 
give 
 

1

A
,

t
 

     


x x B B A     

or, equivalently, 

  2
1

1

2

*
* u ,

t
            

A
v u v B u v   

where 
 

* *

*

,

.

 

 

B A

A A u


 

 
The preceding results can be applied most effectively to the gyrocenter Lagrangian derivation as 
follows. Given  Q , x v , and  a choice of  , ,tu x v  that will be specified shortly, a useful set 

of lowest-order guiding-center phase-space coordinates  Z ,U , ,  R  can be defined as 

2

1

2

,

ˆU ,

ˆ ,

v
,

v ,

ˆ ˆ ,

 

 



 

 

 







  

R x ρ

b v

ρ b v

v

v b v b



  (2.2) 

and   is the angle between the vector ρ  and some fixed direction perpendicular to the magnetic 
field. Now, define 

   0

1

2
, d   


 R R ρ  

Then with the choice 
0

1 ˆ  


u b  , the transformation of Eq. (2.1) from phase-space 

coordinates Q  to Z , as given by Eqs.(2.2), gives 
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   
0

2
0

1

1

2

L

ˆU U

.



 

 

  

         
  

2

A R

u b R + u

u ρ

 







             

 
 
 

1

0

1

......O

......O

......O









 (2.3) 

 
 
Here,  
 

         1 0 0

'
R ExB, , , O V              R ρ R ρ R ρ R  , 

 
That 1   is of order '

ExBV  can be seen from its Taylor series expansion 

 

   2 3 3
1

1 1

2 2 R R R
ˆ ˆ, : O     

    
 

R ρ ρρ I    . 

 
The  terms in Eq.(2.3) are separated into terms formally of order -1, 0, and 1. The only 
gyrophase dependent terms are at order 1 . In assigning the orders of the terms, we used 
 

 d

dt
     u ρ u ρ u ρ , (2.4) 

where 
 

.
t




  
     

 u R u . (2.5) 

 
All of the derivative terms on the right hand side of Eq.(2.5) are of order 1 , and the total time 
derivative term in Eq.(2.4) does not affect the equations of motion.  
 
Also, Eq. (2.3) has   dependences at first order through the dependences of  

0
 , u , and 1   

on  . These dependences result in first-order corrections to  . 

A Lie-transform perturbative treatment is then applied to transform the phase-space coordinates 

 Z Z ,U , ,   R  , to eliminate the gyrophase dependence in the Lagrangian of Eq. (2.3)

using 1 1~     and  ExB 1t ~ .    V 
  
This latter property will used to iteratively 

solve for the gauge function S1. Operators involving spatial derivatives have different orders 
depending what they operate on [20]. 
 
The primary result is the Lagrangian that gives the equations of motion.  
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   

 

1 1 12

2
2

1 1 12

1 1

2 2

1 1 1

2 2 2

1 1

2 2

ˆ ˆL Z ,Z ,t U

ˆ U

ˆ
t

     


    

     


 
           

              
              

2

A b u u R+ b

b u u

u
b





    

 

  

   

  

  

 (2.6) 

 

Here,    ,     R ρ R , 
1 ˆ 


u = b  ,  and the overbars have been dropped so that Z 

now represents the transformed phase-space coordinates. This Lagrangian has several new 
components at second order. This feature makes the equations of motion more complicated than 
in previous theories, but we show below that they are still tractable.  
 
An observation that can be made immediately is that because L  is independent of  , the   
Euler-Lagrange equation yields the result that the quantity 
 

 AD 2

1

2
ˆ      


b u    

 
is conserved. AD is the magnetic-moment adiabatic invariant, up to the second order in our 

theory. 
 
More insight into the transformed variables and the equations of motion can be gained through 
examination of the Lagrangian up to first order. 
 

2
1 0 1

1 1

2 2, ,
ˆL U - U  

             
2A b u R u 

  (2.7) 

 
Given a phase-space Lagrangian such as those of Eqs. (2.6) or (2.7), the equations of motion are 
obtained in the standard way. If we write formally 
 

    i
iL Z ,Z ,t Z ,t Z H   , 

 
Then the Euler-Lagrange equations yield 
 

i
ji , j j ,tZ H   , (2.8) 

where jij i
i jZ Z

 
¶ ¶

= -
¶ ¶

 are the components of the “Lagrange matrix” ω . Multiplying Eq.(2.8) 

by the “Poisson matrix” 1-=P ω  then gives  
 

 i ij
, j j ,tZ P H   . (2.9) 
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Applying these results to the Lagrangian of Eq. (2.7) yields 
 

 

1

0

1

1

*

*

*
gc

ˆ . U ,
t

U ,

,

ˆ- . U ,
t

ˆ ˆ,







 



        

 



              

      


R u b u u

u
b u u

u b b A u

 


 

 
















 







 (2.10) 

 
Thus, R consists of a gyroaveraged E B  drift and a polarization drift. The effective magnetic 
field or gyrofrequency for the E B  drift is  , while that for the polarization drift is * , which 
is modified by the presence of vorticity in u . This difference is a second order correction to 
those equations in (2.10) in which *  appears.    has first and second-order modifications due 
to the   dependences in   and u . The terms 

1 ˆ , U
t

    
u

b u   

 
in R are new and were not present in Refs. [21,22,24]. Note also, that the velocity field u  in the 
present work contains both long- and short-wavelength components, and so is not the same as 
that in  Refs. [21,22,24]. 
 
The equations of motion can be obtained to second order directly from the Lagrangian of 
Eq.(2.6), using Eqs.(2.8) and (2.9), and doing so takes advantage of desirable properties of the 
Hamiltonian formulation such as energy conservation. However, because of the many new 
noncanonical components that appear in the Lagrange matrix ω , the Poisson matrix P  becomes 
quite dense and complicated. For the purpose of analysis and gaining insight, a calculation of the 
second-order equations of motion, through perturbative inversion of ω  is preferable. To do so, 
we use the fact that ω  is easily separated into parts that have different orders in our expansion 
parameter 
 

2
0 1 2 = + +ω ω ω ω , 

 
where 0ω  is canonical, and both 0ω  and 0 1ω ω+  are easily invertible. Using 0ω  as the base 

for the perturbation expansion yields 
 

2
0 1 2 ..... = + + +P P P P , 

with  
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( )

1
0 0

1 0 1 0

2 0 1 0 1 2 0

,

,

.


  

P ω

P P P

P P P P

-=

=-

= -

 (2.11) 

Cleaning up Eqs.(2.10) to cleanly show terms of zero and first order, we obtain 

01

01

01

01

01

1

0

0

ˆ . U ,
t

z

U

-









                                   
 

u b u u
R  

 









 

 . 

and at second order, 

      0
2 2 2 2

2

2

0
2 2 2 2 2

2

2
2 2 2 2

1 1

0

1

0

z z

,z ,z z ,z ,z ,z

, , z , ,

dˆ H U
dt

z
d

U H U
dt

H U





    

 

 



  


       




  

 

                  
   
   
               
   
   
          

 

u
b γ u u

R

u
γ u u

γ u



 











    



. 

The Vlasov equation for the evolution of the gyrocenter distribution function, neglecting 
collisions, can be obtained in the standard way using the fact that the absence of dependence of 
Lagrangian on   decouples the gyrophase dependent and independent parts of the Vlasov 
equation [5] 

0i i
R i

F F
F p

t p

 
   

 
R 



  . 

The main ion contribution to the field equations is through the ion density in . This is obtained 

from iF  via a “pullback transformation” [5] and integration over velocity space. The result, 

which relates in  to iF , is 
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   

 

1

2
1

*
i i

i i

F
n dZ F ,

F
d dv F , F

   


    


 
      

 
      





R ρ x R

x ρ









 (2.12) 

This differs from most previous results in some significant ways. The main polarization density 
is in second term on the last line of Eq.(2.12), which comes from the jacobian *  on the first 

line. This aspect is similar to what was noted in Ref. [22]. The third (“pullback”) term in 
Eq.(2.12), which in the standard gyrokinetic theories yields the main polarization density term, 
here gives only the finite Larmor radius (FLR) corrections to the polarization density.  

 
III. Summary and Discussion 

We have derived a set of gyrokinetic equations in an ordering that is a significant extension and 
generalization of those previously used. Although the derivation presented is for an electrostatic 
slab plasma, the results are already of interest because they contain several new terms and 
differences from previous theories. Furthermore the extension to include electromagnetic 
perturbations and general geometry should be straightforward because many of the key 
difficulties (e.g, the highly noncanonical nature of the terms in the symplectic part of the 
Lagrangian) are already present, and were addressed here.  

Standard gyrokinetic theories, which were designed primarily with MFE core plasmas, use and 
required that 1e T   [or in the electromagnetic case that 1e T   where 

( )1 1p mc A   = - ]. Prior work [20] involving one of the authors of the present paper gave a 

derivation of the theory that was valid under the ordering 1 1ExB the T , V v   , and this has 

also been recognized as a fundamental ordering for some of the iterative derivations (e.g., Ref. 
[25]). Motivated by the presence of large flow velocities in tokamak core transport barriers, an 
extension to allow for a large macroscopic scale-length component in   (which formally also 
had to be static), and which could have an associated E B  velocity  Eu  with 1E thu v  ,  was 

developed [21-24].  Our new ordering requires only that any rates of change of the perturbations, 
including the shearing rate of the E B  velocity  are small. This ordering allows for perturbed 
fields that are significantly more general than those allowed by previous theories. These 
generalizations include: 

(1) A continuum of spatial scales in the perturbations ranging from short (gyroradius-scale) 
perturbations all the way to the macroscopic scales.  

(2) Time and parallel-coordinate dependence at all spatial scales, including the longest 
scales. In particular, it was possible to identify terms in the previous theories of Rerfs. 
[21-24] as parts of a polarization drift in the equations of motion. Our theory restores the 
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partial time-derivative and parallel derivative contributions to this drift, which are of the 
same order as the E B  advective derivative terms that were kept in [21-24]. 

Our theory also reveals several new terms at the second order [e.g., in Eq.(2.6)] that result from 

the beating of such quantities as 1   and   u  . We believe that the reason that these terms 

were absent from Refs. [21-24] was a result of the particular two-pass derivation process used in 
these theories, in which the guiding-center Lagrangian in the presence of the long-wavelength 
E B  flow was obtained first. This first step already involves gyroaveraging and a 
transformation that makes the Lagrangian independent of the gyrophase angle. When second Lie 
perturbation procedure was carried out in Refs. [21-24] to remove the gyrophase-angle 
dependence of the shorter scale perturbations, terms that result from the products of the 
gyrophase dependent parts of the long-wavelength and short-wavelength potentials were 
neglected, even though these are of the same order as the terms that were kept. These new cross 
terms are of the form  

( )2 2
1 1E E~ u ~   ⋅ ⋅  ⋅ ρ u ρ  , 

and are formally of the same order as terms that are kept. 
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